SWIMMING POOL HEAT PUMP UNIT

Installation & Instruction Manual

CONTENTS

1. Preface	1
2. Specifications	2
2.1 Performance Data of Swimming Pool Heat Pump Unit	2
2.2 Dimensions for Swimming Pool Heat Pump Unit	3
3. Installation and Connection	5
3.1 Installation of System	5
3.2 Swimming Pool Heat Pumps Location	6
3.3 How Close to Your Pool?	
3.4 Swimming Pool Heat Pumps Plumbing	7
3.5 Swimming Pool Heat Pumps Electrical Wiring	8
3.6 Initial Start-up of the Unit	8
4. Use and Operation Instruction of Wire Controller	
4.1 Interface display	9
4.2 Key and icon function instruction	
4.3 Startup & shutdown	
4.4 Mode switch	
4.5 Temperature setting	
4.6 Clock setting	
4.7 Silent setting	15
4.8 Keyboard lock	
4.9 Fault interface	16
4.10 Parameter list and breakdown table	17
5. Maintenance and Inspection 2	
6.Appendix 2	21

1. PREFACE

- In order to provide our customers with quality, reliability and versatility, this product has been made to strict production standards. This manual includes all the necessary information about installation, debugging, discharging and maintenance. Please read this manual carefully before you open or maintain the unit. The manufacture of this product will not be held responsible if someone is injured or the unit is damaged, as a result of improper installation, debugging, or unnecessary maintenance. It is vital that the instructions within this manual are adhered to at all times. The unit must be installed by qualified personnel.
- The unit can only be repaired by qualified installer centre, personnel or an authorised dealer.
- Maintenance and operation must be carried out according to the recommended time and frequency, as stated in this manual.
- Use genuine standard spare parts only.
 Failure to comply with these recommendations will invalidate the warranty.
- Swimming Pool Heat Pump Unit heats the swimming pool water and keeps the temperature constant. For split type unit, The indoor unit can be Discretely hidden or semi-hidden to suit a luxury house.

Our heat pump has following characteristics:

1 Durable

The heat exchanger is made of PVC & Titanium tube which can withstand prolonged exposure to swimming pool water.

2 Installation flexibility

The unit can be installed outdoors or indoors.

3 Quiet operation

The unit comprises an efficient rotary/ scroll compressor and a low-noise fan motor, which guarantees its quiet operation.

4 Advanced controlling

The unit includes micro-computer controlling, allowing all operation parameters to be set. Operation status can be displayed on the LCD wire controller. Remote controller can be chosen as future option.

2.1 Performance data of Swimming Pool Heat Pump Unit

*** REFRIGERANT: R410A

UNIT		IV15P Std	IV20P Std	IV30P Std	
*Rated Heating Capacity(90Hz)	kW	7.60	9.0	12.2	
	Btu/h	25840	30700	41480	
*Range	kW	1.60~7.60	2.1~9.0	2.7~12.2	
	Btu/h	5440~25840	7100~30700	9180~41480	
*Rated Heating Power Input(90Hz)	kW	1.46	1.82	2.30	
*Range	kW	0.15~1.46	0.19~1.82	0.2~2.30	
*Rated Running Current Input(90Hz)	A	6.64	7.91	10.0	
*Range	A	0.65~6.64	0.8~7.91	1.1~10.0	
**Rated Heating Capacity(90Hz)	kW	5.80	7.1	9.7	
	Btu/h	19720	24200	33000	
**Range	kW	1.20~5.80	1.6~7.1	2.0~9.7	
	Btu/h	4080~19720	5500~24200	6800~33000	
**Rated Heating Power Input(90Hz)	kW	1.29	1.68	2.18	
**Range	kW	0.21~1.29	0.25~1.68	0.30~2.18	
**Rated Running Current Input(90Hz)	A	5.86	7.30	9.48	
**Range	A	0.91~5.61	1.08~7.30	1.45~9.48	
Power Supply		230V~/50Hz	230V~/50Hz	230V~/50Hz	
Compressor Quantity		1	1	1	
Compressor		rotary	rotary	rotary	
Fan Quantity		1	1	1	
Fan Power Input	W	100	100	100	
Fan Rotate Speed	RPM	300-650	500-700	500-650	
Fan Direction		horizontal	horizontal	horizontal	
Noise	dB(A)	40-50	40-51	38-52	
Water Connection	mm	50	50	50	
Water Flow Volume	m³/h	3.4	3.2	4.2	
Water Pressure Drop(max)	kPa	Pa 4.3 3.0 4.3		4.3	
Unit Net Dimensions(L/W/H)	mm	n See the drawing of the units			
Unit Ship Dimensions(L/W/H)	mm	n See package lable			
Net Weight	kg	g see nameplate			
Shipping Weight	kg	see package label			

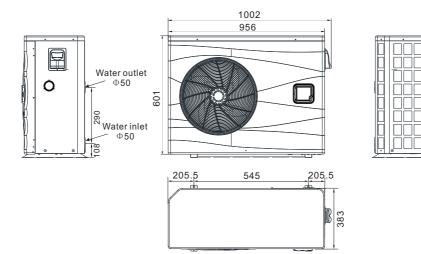
Rated Heating: *Outdoor air temp: 27°C/24.3°C, Inlet/Outlet water temp:26°C/28°C **Outdoor air temp: 15°C/12°C, Inlet/Outlet water temp:26°C/28°C

During heating: Running ambient temperature: -5 $^\circ\!\!C\text{-}43 \,^\circ\!\!C$

2.1 Performance data of Swimming Pool Heat Pump Unit

*** REFRIGERANT: R410A

UNIT		IV40P Std	IV50P Std	
*Rated Heating Capacity(90Hz)	kW	15.9	19.2	
	Btu/h	54300	65280	
*Range	kW	2.8~15.9	3.4~19.2	
	Btu/h	9600~54300	11600~65280	
*Rated Heating Power Input(90Hz)	kW	3.13	3.86	
*Range	kW	0.24~3.13	0.31~3.86	
*Rated Running Current Input(90Hz)	Α	13.7	16.8	
*Range	A	1.2~13.7	1.5~16.8	
**Rated Heating Capacity(90Hz)	kW	12.3	14.2	
	Btu/h	42000	48464	
**Range	kW	2.6~12.3	2.6~14.2	
	Btu/h	8900~42000	8873~48464	
**Rated Heating Power Input(90Hz)	kW	2.77	3.41	
**Range	kW	0.35~2.77	0.38~3.41	
**Rated Running Current Input(90Hz)	A	12.1	14.8	
**Range	A	1.7~12.1	1.8~14.8	
Power Supply		230V~/50Hz	230V~/50Hz	
Compressor Quantity		1	1	
Compressor		rotary	rotary	
Fan Quantity		1	1	
Fan Power Input	W	100	100	
Fan Rotate Speed	RPM	500-700	300~750	
Fan Direction		horizontal	horizontal	
Noise	dB(A)	44-54	42~57	
Water Connection	mm	50	50	
Water Flow Volume	m³/h	5.2	6.2	
Water Pressure Drop(max)	kPa	5.0	4.9	
Unit Net Dimensions(L/W/H)	mm	n See the drawing of the units		
Unit Ship Dimensions(L/W/H)	mm	See package lable		
Net Weight	kg	see nameplate		
Shipping Weight	kg			


Rated Heating: *Outdoor air temp: 27°C/24.3°C, Inlet/Outlet water temp:26°C/28°C **Outdoor air temp: 15°C/12°C, Inlet/Outlet water temp:26°C/28°C

During heating: Running ambient temperature: -5°C~43°C

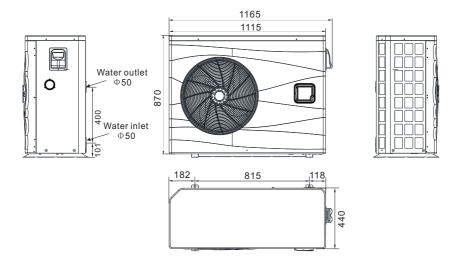
2.2 Dimensions for Swimming Pool Heat Pump Unit

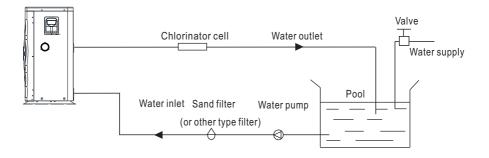
Model:IV15P Std

unit: mm

Model: IV20P Std/IV30P Std

1035 1002 P Water outlet Φ50 Ó Common Comm 770 Γ 350 Water inlet Φ50 03 190 610 201 395


unit: mm


2.2 Dimensions for Swimming Pool Heat Pump Unit

Model:IV40P Std/IV50P Std

unit: mm

3.1 Installation illustration

Installation items:

The factory only provides the main unit and the water unit; the other items in the illustration are necessary spare parts for the water system ,that provided by users or the installer.

Attention:

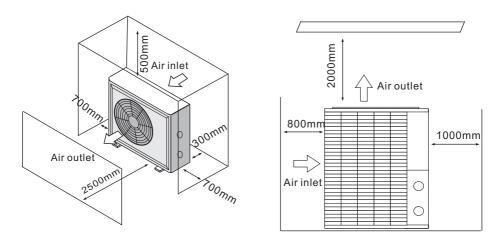
Please follow these steps when using for the first time

- 1. Open valve and charge water.
- 2. Make sure that the pump and the water-in pipe have been filled with water.
- 3.Close the valve and start the unit.

ATTN: It is necessary that the water-in pipe is higher than the pool surface.

The schematic diagram is for reference only. Please check the water inlet/outlet label on the heat pump while plumbing installation.

3.2 Swimming Pool Heat Pumps Location


The unit will perform well in any outdoor location provided that the following three factors are presented:

1. Fresh Air - 2. Electricity - 3. Pool filter piping

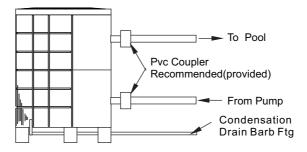
The unit may be installed virtually anywhere outdoors. For indoor pools please consult the supplier. Unlike a gas heater, it has no draft or pilot light problem in a windy area.

DO NOT place the unit in an enclosed area with a limited air volume, where the units discharge air will be re-circulated.

DO NOT place the unit to shrubs which can block air inlet. These locations deny the unit of a continuous source of fresh air which reduces it efficiency and may prevent adequate heat delivery.

3.3 How Close To Your Pool?

Normally, the pool heat pump is installed within 7.5 metres of the pool. The longer the distance from the pool, the greater the heat loss from the piping. For the most part ,the piping is buried. Therefore, the heat loss is minimal for runs of up to15 meters(15 meters to and from the pump = 30 meters total), unless the ground is wet or the water table is high. A very rough estimate of heat loss per 30 meters is 0.6 kW-hour,(2000BTU) for every 5 °C difference in temperature between the pool water and the ground surrounding the pipe, which translates to about 3% to 5% increase in run time.


3.4 Swimming Pool Heat Pumps Plumbing

The Swimming Pool Heat Pumps exclusive rated flow titanium heat exchanger requires no special plumbing arrangements except bypass(please set the flow rate according to the nameplate). The water pressure drop is less than 10kPa at max. Flow rate. Since there is no residual heat or flame Temperatures, The unit does not need copper heat sink piping. PVC pipe can be run straight into the unit.

Location: Connect the unit in the pool pump discharge (return) line downstream of all filter and pool pumps, and upstream of any chlorinators, ozonators or chemical pumps.

Standard model have slip glue fittings which accept 32mm or 50 mm PVC pipe for connection to the pool or spa filtration piping. By using a 50 NB to 40NB you can plumb 40NB

Give serious consideration to adding a quick coupler fitting at the unit inlet and outlet to allow easy draining of unit for winterizing and to provide easier access should servicing be required.

Condensation: Since the Heat pump cools down the air about $4 -5^{\circ}$, water may condense on the fins of the horseshoe shaped evaporator. If the relative humidity is very high, this could be as much as several litres an hour. The water will run down the fins into the basepan and drain out through the barbed plastic condensation drain fitting on the side of the basepan. This fitting is designed to accept 20mm clear vinyl tubing which can be pushed on by hand and run to a suitable drain. It is easy to mistake the condensation for a water leak inside the unit.

NB: A quick way to verify that the water is condensation is to shut off the unit and keep the pool pump running. If the water stops running out of the basepan, it is condensation. AN EVEN QUICKER WAY IS to TEST THE DRAIN WATER FOR CHLORINE - if the is no chlorine present, then it's condensation.

3.5 Swimming Pool Heat Pumps Electrical Wiring

NOTE: Although the unit heat exchanger is electrically isolated from the rest of the unit, it simply prevents the flow of electricity to or from the pool water. Grounding the unit is still required to protect you against short circuits inside the unit. Bonding is also required.

The unit has a separate molded-in junction box with a standard electrical conduit nipple already in place. Just remove the screws and the front panel, feed your supply lines in through the conduit nipple and wire-nut the electric supply wires to the three connections already in the junction box (four connections if three phase). To complete electrical hookup, connect Heat Pump by electrical conduit, UF cable or other suitable means as specified (as permitted by local electrical authorities) to a dedicated AC power supply branch circuit equipped with the proper circuit breaker, disconnect or time delay fuse protection.

Disconnect - A disconnect means (circuit breaker, fused or un-fused switch) should be located within sight of and readily accessible from the unit, This is common practice on commercial and residential air conditioners and heat pumps. It prevents remotely-energizing unattended equipment and permits turning off power at the unit while the unit is being serviced.

3.6 Initial startup of the Unit

NOTE- In order for the unit to heat the pool or spa, the filter pump must be running to circulate water through the heat exchanger.

Start up Procedure - After installation is completed, you should follow these steps:

1. Turn on your filter pump. Check for water leaks and verify flow to and from the pool.

2. Turn on the electrical power supply to the unit, then press the key ON/OFF of wire controller, It should start in several seconds.

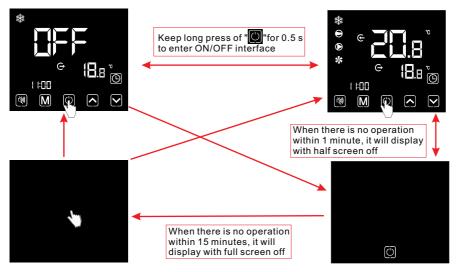
3. After running a few minutes make sure the air leaving the top(side) of the unit is cooler(Between 5-10 $^\circ\!\!C)$

4. With the unit operating turn the filter pump off. The unit should also turn off automatically, 5. Allow the unit and pool pump to run 24 hours per day until desired pool water emperature is reached. When the water-in temperature reach setting, The unit just shuts off. The unit will now automatically restart (as long as your pool pump is running)when the pool temperature drops more than 2°C below set temperature.

Time Delay- The unit is equipped with a 3 minute built-in solid state restart delay included to protect control circuit components and to eliminate restart cycling and contactor chatter. This time delay will automatically restart the unit approximately 3 minutes after each control circuit interruption. Even a brief power interruption will activate the solid state 3 minute restart delay and prevent the unit from starting until the 5 minute countdown is completed. Power interruptions during the delay period will have no effect on the 3 minute countdown.

4.1.Interface display

4.2.Key and icon function instruction


2.1 Key function instruction

Key symbols	Designation	Function
-	Mute key	Under the heating mode or heating mode under the automatic mode, the mute key operation is effective and used to enter and exit the mute mode with one click.
M	Mode key	It is used to switch the unit mode, temperature setting, and parameter setting.
\bigcirc	On-off key	It is used to carry out startup & shutdown, cancel current operation, and return to the last level of operation.
	Up key	It is used to page up, and increase variable value.
	Down key	It is used to page down, and decrease variable value.
O	Clock key	It is used as user clock, and to carry out timing setting.

Icon symbol	Designation	Function
***	Cooling symbol	It will display during cooling (there is no limit to startup & shutdown, and it is optional when the unit is cooling-only unit or heating-and-cooling unit).
*	Heating symbol	It will display during heating (there is no limit to startup & shutdown, and it is optional when the unit is heating-only unit or heating-and-cooling unit).
EA B	Automatic symbol	It will display under the automatic mode (there is no limit to startup & shutdown, and it is optional when the unit is heating- and-cooling unit).
	Defrosting symbol	It will display in the defrosting process of the unit.
θ	Compressor symbol	It will display when compressor is started.
\bigcirc	Water pump symbol	It will display when water pump is started.
*	Fan symbol	It will display when fan is started.
Ľ(v)	Mute symbol	When the timing mute function is started, it keeps bright for a long time. When it is in mute state, it will flash. Or else, it is off.
Ö	Timing symbol	It will display after the user sets the timing, and multiple timing intervals can be set .
Ģ	Water outlet symbol	When the axillary display area displays the water outlet temperature, the light is on.
Ψ	Water inlet symbol	When the main display area displays the water inlet temperature the light is on.
ô	Locking key symbol	When the keyboard is locked, it is on.
\land	Fault symbol	In case of unit fault, it is on.
হ	Wireless signal symbol	When the unit is connected to WIFI module, it will display according to the strength of WIFI signal.
°C	Degrees Celsius symbol	When main display area or auxiliary display area displays degrees Celsius, it is on.
°F	Degrees Fahrenheit symbol	When main display area or auxiliary display area displays degrees Fahrenheit, it is on.
SET	Setting symbol	When the parameter is adjustable, it is on
sec	Second symbol	When main display area displays second digit, it is on.
min	Minute symbol	When main display area displays minute digit, it is on.
hr	Hour symbol	When main display area displays hour digit, it is on.
bar	Pressure symbol	When main display area displays pressure, it is on.
m³∕h	Flow symbol	When main display area displays flow, it is on.

2.2.Icon function instruction

4.3. Startup & shutdown

Notes:

Startup & shutdown operation can only be conducted in the main interface.

When it displays with half screen off or full screen off, click any key for returning to ON/OFF main interface.

When the unit is started under the control of wire controller, if using the emergency switch to shut down, the wire controller will display as follows:

Operations are the same as under ON/OFF main interface.

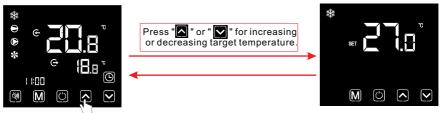
4.4. Mode switch

Under the main interface, Short press" 🕅 "to switch the unit among heating " 🞇 ", cooling " 🕵 " and automatic mode " 👪 ".

Operation descriptions:

1). Mode switch operation can only be conducted in the main interface.

2). When the unit is under the defrosting state, the defrosting symbol is on, with the display interface as follows:



Notes:

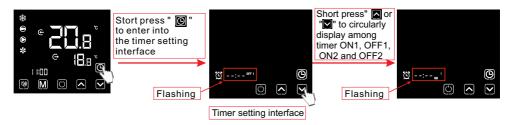
1).After completing the defrosting, the unit will be automatically switched to the heating/ automatic mode (keeping consistent with the mode before defrosting).

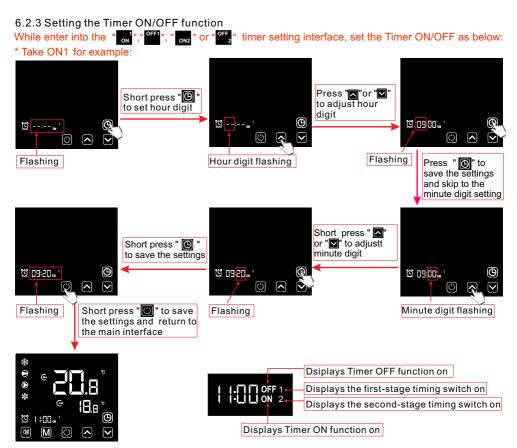
During the defrosting, mode switch is available. And when switching the mode, the unit won't work under a new mode until defrosting is completed.

5. Temperature setting

Notes: Under the temperature setting interface, if short press " 🔘 ", the system will return to the main interface without any changes saved; If there is no operation for 5 s or short press " 🕅 ", the current mode will be saved, and return to the main interface.

4.6. Clock setting


6.1 System time setting

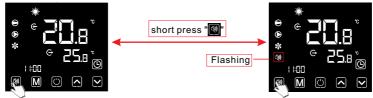


Notes: Under the clock setting interface, if there is no operation for 20 s, the system will automatically memorize use's settings, and return to the main interface; if short press is during any operating steps, the changes will not be saved and return to the main interface.

6.2 Setting and cancelling the Timer ON/OFF function

6.2.1 The wire controller can set up a two-stage timing switch: Timer ON1~ OFF1; Timer ON2~OFF2. 6.2.2 Select " o_n^1 ", "OFF1", " o_n^2 " or " OFF_2 " timer setting interface:

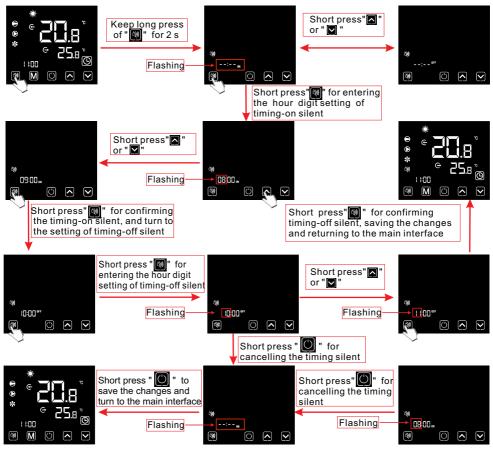
6.2.4 Cancelling the Timer ON/OFF function



Note: Under the Timer ON/OFF setting interface, if the timing symbol and entire time digits flash at the same time, click "🗐 " to return to the main interface;

4.7. Silent setting

7.1 One-click silent function



Notes:

1). If one-click silent and timming silentaare stared at the same time, short press "[] for canceling one-click silent and quitting the timing silent for this time.

2). At night or the rest time, user can start one-click silent or timing silent function to reduce the noise.

7.2 Setting and cancelling the silent function

Notes:

1). When the silent icon" 🚳 " is lighten: The timing mute has been set, but it's not under silent status.

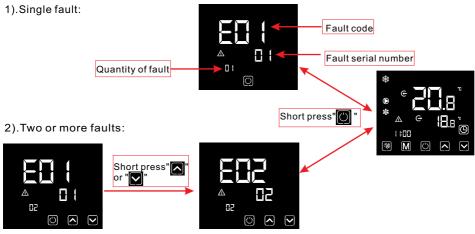
2). When the silent icon" I flash: It's under the silent status.

3). When the silent icon" M "disappear: The timingsilent is not set.

4.8.Keyboard lock

To avoid others' misoperation, please lock the wire controller after completing the setting.

Notes:


1). Under the locked screen interface, only unlocking operation is available, and the screen will be lighten after other operations conducted.

2). Under the OFF interface, locking operation is available, and the operation method is the same as locking screen under the ON interface.

4.9.Fault interface

When the unit fails, the wire controller can display the corresponding code according to the fault reason. Refer to the fault table for the specific definition of the fault codes.

For example:

Remark:

The wire controller can display the temperature unit as "F" or "C" according to the unit model you bought.

4.10 . Parameter list and breakdown table

10.1 Electronic control fault table

Can be judged according to the remote controller failure code and troubleshooting

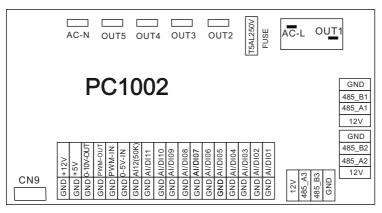
Protect/fault	Fault display	Reason	Elimination methods	
Inlet Temp. Sensor Fault	P01	The temp. Sensor is broken or short circuit	Check or change the temp. Sensor	
Outlet Temp. Sensor Fault	P02	The temp. Sensor is broken or short circuit	Check or change the temp. Sensor	
Amibent Temp. Sensor Fault	P04	The temp. Sensor is broken or short circuit	Check or change the temp. Sensor	
Coil 1 Temp. Sensor Fault	P05	The temp. Sensor is broken or short circuit	Check or change the temp. Sensor	
Coil 2 Temp. Sensor Fault	P15	The temp. Sensor is broken or short circuit	Check or change the temp. Sensor	
Suction Temp. Sensor Fault	P07	The temp. Sensor is broken or short circuit	Check or change the temp. Sensor	
Discharge Temp. Sensor Fault	P081	The temp. Sensor is broken or short circuit	Check or change the temp. Sensor	
Exhaust Air over Temp Prot.	P082	The compressor is overload	Check whether the system of the compressor running normally	
Antifreeze Temp. Sensor Fault	P09	Antifreeze temp sensor is broken or short circuited	check and replace this temp sensor	
Pressure sensor Fault	PP	The pressure Sensor is broken	Check or change the pressure Sensor or pressure	
High Pressure Prot.	E01	The high-preesure switch is broken	Check the pressure switch and cold circuit	
Low Pressure Prot.	E02	Low pressure1 protection	Check the pressure switch and cold circuit	
Flow Switch Prot.	E03	No water/little water in water system	Check the pipe water flow and water pump	
Waterway Anti-freezing Prot.	E05	Water temp.or ambient temp. is too low		
Inlet and outlet temp. too big	E06	Water flow is not enough and low differential pressure	Check the pipe water flow and whether water system is jammed or not	
Anti-freezing Prot.	E07	Water flow is not enough	Check the pipe water flow and whether water system is jammed or not	
Winter Primary Anti-freezing Prot.	E19	The ambient temp. Is low in winter		
Winter Secondary Anti-freezing Prot.	E29	The ambient temp. Is low in winter		
Comp. Overcurrent Prot.	E051	The compressor is overload	Check whether the system of the compressor running normally	
Communication Fault	E08	Communicat ion failure between wire controller and mainboard	Check the wire connection between remote wire controller and main board	
Communication Fault (speed control module)	E081	Speed control module and main board communication fail	Check the communication connection	
Low AT Protection	TP	Ambient temp is too low		
EC fan feedback Fault	F051	There is something wrong with fan motor and fan motor stops running	Check whether fan motor is broken or locked or not	
Fan Motor1 Fault	F031	1. Motor is in locked-rotor state 2. The wire connection between DC-fan motor module and fan motor is in bad contact	1.Change a new fan motor 2.Check the wire connection and make sure they are in good contact	

Fan Motor2 Fault	F032	1. Motor is in locked-rotor state 2. The wire connection between DC-fan motor module and fan motor is in bad contact	1 Change a new tan motor
Communication Fault (speed control module)	E081	Speed control module and main board communication fail	Check the communication connection

Frequency conversion board fault table:

Protection/fault	Fault display	Reason	Elimination methods
Drv1 MOP alarm	F01	MOP drive alarm	Recovery after the 150s
Inverter offline	F02	Frequency conversion board and main board communication failure	Check the communication connection
IPM protection	F03	IPM modular protection	Recovery after the 150s
Comp. Driver Failure	F04	Lack of phase, step or drive hardware damag	Check the measuring voltage check requency conversion board hardware
DC Fan Fault	F05	Motor current feedback open circuit or short circuit	Check whether current return wires connected motor
IPM Overcurrent	F06	IPM Input current is large	Check and adjust the current measurement
Inv. DC Overvoltage	F07	DC bus voltage>Dc bus over-voltage protection value	Check the input voltage measurement
Inv. DC Lessvoltage	F08	DC bus voltage <dc bus="" over-voltage<br="">protection value</dc>	Check the input voltage measurement
Inv. Input Lessvolt.	F09	The input voltage is low, causing the input current is high	Check the input voltage measurement
Inv. Input Overvolt.	F10	The input voltage is too high, more than outage protection current RMS	Check the input voltage measurement
Inv. Sampling Volt.	F11	The input voltage sampling fault	Check and adjust the current measurement
Comm. Err DSP-PFC	F12	DSP and PFC connect fault	Check the communication connection
Input Over Cur.	F26	The equipment load is too large	
PFC fault	F27	The PFC circuit protection	Check the PFC switch tube short circuit or not
IPM Over heating	F15	The IPM module is overheat	Check and adjust the current measurement
Weak Magnetic Warn	F16	Compressor magnetic force is not enough	
Inv. Input Out Phase	F17	The input voltage lost phase	Check and measure the voltage adjustment
IPM Sampling Cur.	F18	IPM sampling electricity is fault	Check and adjust the current measurement
Inv. Temp. Probe Fail	F19	Sensor is short circuit or open circuit	Inspect and replace the sensor
Inverter Overheating	F20	The transducer is overheat	Check and adjust the current measurement
Inv. Overheating Warn	F22	Transducer temperature is too high	Check and adjust the current measurement
Comp. OverCur. Warn	F23	Compressor electricity is large	The compressor over-current protection
Input Over Cur. Warn	F24	Input current is too large	Check and adjust the current measurement
EEPROM Error Warn	F25	MCU error	Check whether the chip is damaged Replace the chip
V15V over/undervoltage fault	F28	The V15V is overload or undervoltage	Check the V15V input voltage in range 13.5v~16.5v or not

10.2 Parameter list


Meaning	Default	Remarks
Refrigeration target temperature set point	27°C	Adjustable
Heating the target temperature set point	27°C	Adjustable
Automatic target temerature set point	27°C	Adjustable

5. MAINTENANCE AND INSPECTION

- Check the water supply device and the release often. You should avoid the condition of no water or air entering into system, as this will influence unit's performance and reliability. You should clear the pool/spa filter regularly to avoid damage to the unit as a result of the dirty of clogged filter.
- The area around the unit should be dry, clean and well ventilated. Clean the side heating exchanger regularly to maintain good heat exchange as conserve energy.
- The operation pressure of the refrigerant system should only be serviced by a certified technician.
- Check the power supply and cable connection often, Should the unit begin to operate abnormally, switch it off and contact the qualified technician.
- Discharge all water in the water pump and water system ,so that freezing of the water in the pump or water system does not occur. You should discharge the water at the bottom of water pump if the unit will not be used for an extended period of time. You should check the unit thoroughly and fill the system with water fully before using it for the first time after a prolonged period of no usage.

6. Interface drawin

6.1 Controller interface diagram and definition

Main board of the input and output interface instructions below

Number	Sign	Meaning		
01	OUT1	Compressor (output 220-230VAC)		
02	OUT2	Water pump (output 220-230VAC)		
03	OUT3	4-way valve (output 220-230VAC)		
04	OUT4	High speed of fan (output 220-230VAC)		
05	OUT5	Low speed of fan (output 220-230VAC)		
06	AC-L	Live wire (input 220-230VAC)		
07	AC-N	Neutral wire (input 220-230VAC)		
08	AI/DI01	Emergency switch (input)		
09	AI/DI02	Water flow switch (input)		
10	AI/DI03	System low pressure (input)		
11	AI/DI04	System high pressure (input)		
12	AI/DI05	System suction temperature (input)		
13	AI/DI06	Water input temperature (input)		
14	AI/DI07	Water output temperature (input)		
15	AI/DI08	System fan coil temperature(input)		
16	AI/DI09	Ambient temperature (input)		
17	AI/DI10	Mode switch (input)		
18	AI/DI11	Master-slave machine switch / Antifreeze		
10	AI/DITT	temperature (input)		
19	AI12(50K)	System Exhaust temperature (input)		
20	0_5V_IN	Compressor current detection/Pressure sensor(input)		
21	PWM IN	Master-slave machine switch / Feedback signal of EC		
21		fan (input)		
22	PWM_OUT	AC fan control (output)		
23	0_10V_OUT	EC fan control (output)		

Number	Sign	Meaning		
24	+5V	+5V (output)		
25	+12V	+12V (output)		
26	GND			
27	485_B1			
28	485_A1	Frequency conversion board communications		
29	12V			
30	GND			
31	485_B2	LED controller communication		
32	485_A2			
33	12V			
34	CN9	Electronic expansion valve		
35	GND			
36	485_B3	The part for controlized control		
37	485_A3	The port for centralized control		
38	12V			

Notes:

When the unit uses EC fan, PWM-IN port is used for feedback input of EC fan by default, and AI/DI11 port is used as master-slave switch by default; when the unit uses non-EC fan, PWM-IN port is used as master-slave switch by default, and AI/DI11 port is used as anti-freezing protection switch by default.

Caution & Warning

- 1. The unit can only be repaired by qualified installer centre personnel or an authorised dealer(for Europe market).
- 2. This appliance can used by children aged from 8 years and above and persons with reduced physical, sensory or mental capabilities or lack of experience and knowledge if they have been given supervision or instruction concerning use of the appliance in a safe way and understand the hazards involved(for Europe market). Children shall not play with the appliance .Cleaning and user maintenance shall not be made by children without supervision.
- 3. Please make sure that the unit and power connection have good earthing, otherwise may cause electrical shock.
- 4. If the supply cord is damaged, it must be replaced by the manufacturer or our service agent or similarly qualified person in order to avoid a hazard.
- 5. Directive 2002/96/EC (WEEE):

The symbol depicting a crossed-out waste bin that is underneath the appliance indicates that this product, at the end of its useful life, must be handled separately from domestic waste, must be taken to a recycling centre for electric and electronic devices or handed back to the dealer when purchasing an equivalent appliance.

- 6. Directive 2002/95/EC (RoHs): This product is compliant with directive 2002/95/EC (RoHs) concerning restrictions for the use of harmful substances in electric and electronic devices.
- 7. The unit CANNOT be installed near the flammable gas. Once there is any leakage of the gas , fire can be occur.
- 8. Make sure that there is circuit breaker for the unit, lack of circuit breaker can lead to electrical shock or fire.
- 9. The heat pump located inside the unit is equipped with an over-load protection system. It does not allow for the unit to start for at least 3 minutes from a previous stoppage.
- 10. The unit can only be repaired by the qualified personnel of an installer center or an authorized dealer(for North America market).
- 11. Installation must be performed in accordance with the NEC/CEC by authorized person only (for North America market).
- 12. Use supply wires suitable for $75^\circ\!{\rm C}.$
- 13. Caution: Single wall heat exchanger is not suitable for potable water connection.

6.2 Cable specification

1. Single phase unit

Nameplate maximum current	Phase line	Earth line	МСВ	Creepage protector	Signal line
No more than 10A	2×1.5mm ²	1.5mm ²	20A	30mA less than 0.1 sec	
10~16A	2×2.5mm ²	2.5mm ²	32A	30mA less than 0.1 sec	
16~25A	2×4mm ²	4mm ²	40A	30mA less than 0.1 sec	
25~32A	2×6mm ²	6mm ²	40A	30mA less than 0.1 sec	
32~40A	2×10mm ²	10mm ²	63A	30mA less than 0.1 sec	
40~63A	2×16mm ²	16mm ²	80A	30mA less than 0.1 sec	$n \times 0.5 mm^2$
63~75A	2×25mm ²	25mm ²	100A	30mA less than 0.1 sec	
75~101A	2×25mm ²	25mm ²	125A	30mA less than 0.1 sec	
101~123A	2×35 _{mm²}	35mm ²	160A	30mA less than 0.1 sec	
123~148A	2×50 _{mm²}	50mm ²	225A	30mA less than 0.1 sec	
148~186A	2×70 _{mm²}	70mm ²	250A	30mA less than 0.1 sec	
186~224A	2×95 _{mm²}	95mm ²	280A	30mA less than 0.1 sec	

2. Three phase unit

Nameplate maximum current	Phase line	Earth line	МСВ	Creepage protector	Signal line
No more					
than 10A	<u>3×1.5mm²</u>	1.5mm ²	20A	30mA less than 0.1 sec	
10~16A	3×2.5mm ²	2.5mm ²	32A	30mA less than 0.1 sec	
16~25A	3×4mm ²	4mm ²	40A	30mA less than 0.1 sec	
25~32A	3×6mm ²	6mm ²	40A	30mA less than 0.1 sec	
32~40A	$3 \times 10 \text{mm}^2$	10mm ²	63A	30mA less than 0.1 sec	V05 2
40~63A	$3 \times 16 \text{mm}^2$	16mm ²	80A	30mA less than 0.1 sec	n×0.5mm ²
63~75A	$3 \times 25 \text{mm}^2$	25mm ²	100A	30mA less than 0.1 sec	
75~101A	$3 \times 25 \text{mm}^2$	25mm ²	125A	30mA less than 0.1 sec	
101~123A	$3 \times 35 \text{mm}^2$	35mm ²	160A	30mA less than 0.1 sec	
123~148A	$3 \times 50 \text{mm}^2$	50mm ²	225A	30mA less than 0.1 sec	
148~186A	3×70 mm ²	70mm ²	250A	30mA less than 0.1 sec	
186~224A	$3 \times 95 \text{mm}^2$	95mm ²	280A	30mA less than 0.1 sec	

When the unit will be installed at outdoor, please use the cable which can against UV.

Correct Disposal of this product

This marking indicates that this product should not be disposed with other household wastes thoughout the EU. To prevent possible harm to the environment or human health from uncontrolled waste disposal, recycle it responsibly to promote the sustainable reuse of material resources. To return your used device, please use the return and collection systems or contact the retailer where the product was purchased. They can take this product for environmental safe recycling.